

An Introduction to Advanced UNIX

Part 1

Kevin Keay

April 2008

Last Revised: Apr 20 2008

 1

Introduction

This brief document is a follow-up to Introduction to the School of Earth Sciences UNIX computer

network. Please refer to that document for information concerning system login and basic use of

UNIX and the C shell.

For additional help, please ask Brett Holman or Doug Morrison (support@earthsci.unimelb.edu.au),
Kevin Keay (keay@unimelb.edu.au) or any of the Meteorology postgraduate students. A very
useful and concise reference book covering UNIX and the C shell is:

UNIX in a Nutshell, O’Reilly and Associates (Engineering Library: 005.43 GILL).

A useful online resource from the University of Surrey, UNIX Tutorial for Beginners, is
available at:

http://www.ee.surrey.ac.uk/Teaching/Unix/

The above webpage includes a link to download a zip file of the tutorial to your PC.

Another useful web site at the University of Minnesota that concerns C shell scripts is:

Introduction to C-Shell Programming

by Jennifer Dudley. This tutorial is no longer available on the web but there is a PDF version
(modified by Kevin Keay) that is retained on the Honours web site.

Note that the scripts are correct for all UNIX systems. However, the example involving
conmap requires the appropriate ‘endian’ version for the binary CMP (conmap) file (see C

shell Scripts - section 8).

All UNIX commands should have a manual (man) page on the machine that you are using e.g.
man awk. However sometimes the pages are not installed or are in an unexpected location. It

may be more convenient to use a search engine like Google to find information on a command.

A remark about the csh command

In most cases you will use:

 #!/bin/csh –f

 2

as the first line of your C shell script. You may use exit for your last line but this is optional.

The –f means fast start (no source of your .login or .cshrc files in /home/user).
Other useful options are:

–n Parse (interpret), but do not execute commands. This option can be used to check C shell
scripts for syntax errors.

–x Echo. Set the echo variable; echo commands after all substitutions and just before
execution.

See: man csh for more details.

After you have created a script use: chmod 755 myscript to make it executable, just like a

command or program. To run:

myscript

You can also use the csh command at the shell prompt:

 csh myscript

and include additional options without having to change the first line during testing. However,
normally you would use the first method i.e. myscript.

Comments in a script start with a hash (#) and may be placed anywhere; blank lines are

ignored. A command may be extended onto additional lines with a back slash (\) – see C shell

scripts - section 4 for an example.

Finally, the section: Lab session – Advanced UNIX contains a set of basic C shell example
scripts, as well as an illustration of the decoding of a NetCDF file and data processing and an
example of Generic Mapping Tools (GMT).

 3

C shell scripts

See: Introduction to C-Shell Programming.

Supplementary material

1. ‘command`

A useful way of getting command or program output into a shell variable. The `

character is usually on the key with ~ at the upper left of the keyboard, not the one with
”. For example:

#!/bin/csh –f

set x = `whoami` # Store the username in $x
echo $x # This will write the username on the screen

Another case:

#!/bin/csh –f

set ff = `ls` # $ff will contain all the filenames in the current folder
@ nf = $#ff # $nf is the number of filenames
@ i = 1

while ($i <= $nf)

 set f = ($ff[$i])

 echo “File “$i “:” $f # Write each filename on screen
 @ i ++ # Increments counter $i by 1
end

2. Debugging scripts

Use: csh –n myscript

to check the syntax for errors (does not execute the script). The –x option is useful too
see: A remark about the csh command.

 4

3. foreach

This is useful for processing groups of files. For instance:

#!/bin/csh -f

foreach f (*.txt)

 echo $f # Write each filename on the screen
end

A number can be assigned to each file.

#!/bin/csh –f

@ k = 0 # File counter
foreach f (*.txt)

 @ k = ($k + 1) # or use: @ k ++ # Add 1 to $k
 echo “File no: “$k $f # Write counter and filename on the screen
end

Note that with echo the text in “” is written to the screen and that spaces within the
double quotes command are written out too i.e. echo “File no: “$k
$f has more output spaces than in the example.

4. sed

The sed command (stream editor) is useful for all kinds of things including renaming

files. For instance, if you have a set of filenames like precipitation.yyyy.dat where yyyy
is a four-digit year you could rename them to Australian_rainfall.yyyy.txt using the
following script:

 #!/bin/csh –f
foreach f (precipitation.????.dat)

 echo “Input filename:” $f

 # Replace (substitute) ‘precipitation’ with ‘Australian_rainfall’ then pipe
 # through sed again to replace ‘dat’ with ‘txt’
 # The ‘\’ at the end of the next line indicates that the command is

 # continued on to the next line – useful for long commands

 set o = `echo $f | sed –e “s/precipitation/Australian_rainfall/” | \

 sed –e “s/dat/txt/”`

 5

 echo “Renaming $f to $o”
 mv $f $o

 end

exit

Note: this example is just for illustration but you could modify it to work on your own
data.

5. awk

This is a useful command that includes a scripting language based on C. It is particularly
useful for dealing with text files that contain columns. For example, you may have a file
containing 10 columns but it might be convenient to extract columns 4 and 5 and output
these to another file for subsequent processing. The following command does this task:

awk '{printf "%7.2f%7.2f\n", $4, $5}' data.txt >! cols_4+5.txt

The output file (cols_4+5.txt) contains two columns, each 7 columns wide with 2
decimal places – these are floating point (real in Fortran) numbers, hence the ‘f’ in
%7.2f (F7.2 in Fortran):

 92.50 -87.50

 90.00 -85.00

 300.00 -85.00

 250.00 -82.50

 302.50 -82.50

 52.50 -80.00

If you are not concerned about formatting then a simpler usage is:

awk '{print $4, $5}' data.txt >! cols_4+5.txt

Note: print rather than printf (formatted).

awk is also useful to output a range of lines from a text file e.g. lines 10-20 as in this

example:

awk 'NR >= 10 && NR <= 20 {print $0}' test.txt >! out.txt

Field $0 is the entire current line of the text file.

6. cut

 6

This can be used to extract ‘segments’ of a filename or text string. For instance, you
may have a set of filenames like rainfall.yyyymmdd.dat where yyyy is a four-digit year,
mm is a two-digit month and dd is a two-digit day. You could input the files to some
program e.g. getmax (a fictitious program to print out the maximum rainfall on a day

to the screen) but want the output to be directed to a file that contains the date. We can
extract the date from the filename with the cut command. Since the filename comprises

segments delimited by dots we can use the –d option with ‘.’ as the segment separator.
To select the individual segments (fields) we use the –f option. ‘rainfall’ is field 1,
‘yyyymmdd’ is field 2 and ‘dat’ is field 3 (note that the dot is not included in the field).
Here is an example to illustrate this.

#!/bin/csh –f

foreach f (rainfall.????????.dat)

 echo “Input filename:” $f

 set d = `echo $f | cut –d. –f 2` # d is date (field 2)

 set o = (output.$d.txt)

 getmax $f >! $o

 end

If you wanted to extract the year, month and day from the date segment (which is in
shell variable $d) you could use the –c option of cut:

set yr = `echo $d | cut –c 1-4` # Use characters 1-4 as year

set mn = `echo $d | cut –c 5-6` # Use characters 5-6 as month

set dy = `echo $d | cut –c 7-8` # Use characters 7-8 as day

 7

7. Character matching

In UNIX it is possible to simplify the command-line representation of files or the search
for phrases in text files with character matching. For instance, you may have a set of
pressure files ave.pmsl.ncep2.yyyymm.cmp where yyyy is a four-digit year and mm is a
two-digit month. With C shell variables $y for year and $m for month, a particular file

is:

ave.pmsl.ncep2.ym.cmp

 If you want to specify the winter (JJA) files you could use:

ave.pmsl.ncep2.${y}0[6-8].cmp

Note: the braces around y prevent any confusion otherwise the shell will be looking for
$y0 rather than $y. The expression [6-8] means a 6, 7 or 8 in that position e.g.
ave.pmsl.ncep2.200207.cmp. An equivalent form is [6,7,8].

If you were interested in the years 1994, 1995, 1996, 2000 and 2002 for JJA you could
use:
 ave.pmsl.ncep2.{1994,1995,1996,2000,2002}0[6-8].cmp

or ave.pmsl.ncep2.{199[4-6],200[0,2]}0[6-8].cmp

The [] are used for single characters to be matched and the {} are used for longer text

strings.

Note: For a two-digit month the if command can be used to include a zero for months

less than 10.

Assume we have a month $mn m=1 … 12
if ($mn < 10) then

 set m = (0$mn)

else

 set m = ($mn)

endif

m is a two-digit month e.g. $m = 06 for June

 8

8. Answering prompts

Often you will use programs that require answers to questions as well as command-line
arguments. A program used by many people in the group for plotting data on a latitude-
longitude grid is called conmap, which is a Fortran program based on the free NCAR
Graphics. Since most people use the Linux machines conmap7 will be used for

illustration. Here is an example.

At the prompt type:

conmap7 –SB pmsl.ncep.linux.cmp

You will be asked:

Do you want a grey scale rather than colour bands?
Answer n for no.

Enter format for key labels (6 chars) e.g. (f6.1)
Type (f6.1) (appropriate for pressure values)

Do you want to select your own colours? (y/n)
Answer n

Do you want the key?
Answer y
You should then see a message: DO NOT FORGET TO USE GLW_COLOR TO PRINT
A special graphics file called gmeta has been created.
At one stage the script glw_color was used for printing purposes. Today you can use:

g2ps –c gmeta

where –c means a colour plot.
This creates a Postcsript file called g.ps. You can use convert to change this to a
graphics format e.g. PNG, JPEG, to insert into (say) a Microsoft Word document:

convert g.ps g.png

There are many options for convert – see: man convert

The Linux version is more recent than the SUN version – see for instance the –trim
option.

Now, rather than answering the prompts we can store our responses in a text file and

 9

control the program. Using:

nedit icon

Type:
n
(f6.1)
n
y

and save it. Then run the script:

#!/bin/csh –f

conmap7 –SB pmsl.ncep.linux.cmp < icon

g2ps –c gmeta

convert g.ps g.png

exit

The < means read the responses from the file called icon rather than the keyboard.
A variation on this theme is to include the responses in the script using the << operator:

#!/bin/csh –f

conmap7 –SB pmsl.ncep.linux.cmp << ! # The responses end at next
instance of !
n

(f6.1)

n

y

!

g2ps –c gmeta

convert g.ps g.png

exit

A remark on binary CMP (conmap) files

If you are using a Solaris (SUN) machine e.g. atlas, you need to convert the CMP
(conmap) file using a program written by Kevin Keay called binswap. This is actually

written in C!. For example:

 10

binswap –c pmsl.ncep.linux.cmp pmsl.ncep.sun.cmp

where binswap is run on the Solaris machine.

The output CMP file (pmsl.ncep.sun.cmp) can now be read on a Solaris machine.
The reverse procedure is also true: a Solaris CMP file may be converted on a Linux
machine with binswap.

 11

Lab session – Advanced UNIX

Kevin Keay

Apr 20 2008

1. Log on to one of our Linux machines e.g. cove, tide:

 ssh –X cove

2. cd ~

mkdir adv_unix

cd adv_unix

 cp /home/kevin/unix_course/zadv_unix.zip .

unzip zadv_unix.zip

You will see these folders in adv_unix:

data/ gmt/ lab/ reanal/

The Lab session scripts are in lab, the decoding of a NetCDF file and data

processing examples are in reanal and the GMT examples are in gmt.

The scripts have names ending in .csh. When you write your own scripts you may

call them whatever you wish e.g. add_files.

3. As a quick exposure to writing scripts:
 nedit s1.csh

 Type:

 #!/bin/csh –f

 set x = `whoami` # Store the username in $x
 echo $x # This will write the username on the screen

 Save it.
 At the shell prompt:

 12

 csh –n s1.csh

 This just checks for errors – the script is not executed.
 Make the script an executable file: chmod 755 s1.csh

 Run it:

 s1.csh

 You should see your username printed on the screen
 e.g. kevin

4. Try out the other scripts: s2.csh – s7.csh or in UNIX, s[2-7].csh (!)

Examples

s1.csh

#!/bin/csh -f
set x = `whoami` # Store the username in $x
echo $x # This will write the username on the screen

s2.csh

#!/bin/csh -f
set ff = `ls` # $ff will contain all the filenames in the
current folder
@ nf = $#ff # $nf is the number of filenames
@ i = 1
while ($i <= $nf)
 set f = ($ff[$i])
 echo "File "$i ":" $f # Write each filename on screen
 @ i ++ # Increments counter $i by 1
end

s3.csh

#!/bin/csh -f
foreach f (*.pal)
 echo "Input filename:" $f
 set o = `echo $f | sed -e "s/pal/txt/"`
 echo "Renaming $f to $o"
 mv $f $o
end
exit

 13

Note: The *.pal files are renamed (moved) to *.txt. The original *.pal files are stored in zpal.zip.
Before proceeding, restore these files:

unzip zpal.zip

s4.csh

#!/bin/csh -f
foreach f (pmsl.ncep.????????.cmp)
 echo "Input filename:" $f
 set d = `echo $f | cut -d. -f 3` # d is date (field 3)
 echo "Date:" $d
 set yr = `echo $d | cut -c 1-2` # Use characters 1-2 as year
 set mn = `echo $d | cut -c 3-4` # Use characters 3-4 as
month
 set dy = `echo $d | cut -c 5-6` # Use characters 5-6 as day
 set hr = `echo $d | cut -c 7-8` # Use characters 5-6 as hour
 echo "Year: "$yr "Month: "$mn "Day: "$dy "Hour: "$hr
end

s5.csh

#!/bin/csh –f
echo "List 1"
ls pmsl.ncep.96060[1-3]*.cmp
echo "List 2"
ls pmsl.ncep.96060[1,3]*.cmp
echo "List 3"
ls pmsl.ncep.9606??{06,18}.cmp

s6.csh

#!/bin/csh -f
if ($#argv == 0) then
 echo "Usage: s6.csh CMP_file"
 exit
else
 set infile = ($1) # Assign argument 1 to infile
 echo "CMP file: "$infile # or ${infile}
endif

Create plot (gmeta) using instruction file icon (answers to
prompts)
conmap7 -k icon_k.band.s6 -SB $1 < icon
Convert gmeta to Postscript (g.ps)
g2ps -c gmeta
Convert g.ps to g.png (PNG file)
convert -trim -density 100 g.ps gs6.png

 14

echo "Plot file: gs6.png"
Next line - needs to have \! not just ! - confuses csh
echo "Done\!"

exit

Note: The script s6.csh uses additional files (icon.k.band.s6 and icon) to work correctly. These
files contain parameters and responses for conmap7.

s7.csh

#!/bin/csh -f

In this example it is ASSUMED that you will give a conmap
filename
This becomes argument 1 ($1)

if ($#argv == 1) then
echo "Filename is "$1
conmap -SB $1 << ! # The responses end at next instance of !
n
(f6.1)
n
y
!
g2ps -c gmeta
convert g.ps g.png

else
 echo "ERROR: Give a filename, silly\!" # Note \! not just !
endif

exit

Note: The script s7.csh uses the << ! … ! structure to give the responses for conmap7.

 15

An example of decoding a NetCDF file and data processing

The C-shell scripts and conmap7/ausmap instruction files are in: adv_unix/reanal.

Assume we have downloaded a NetCDF file called pmsl_198007_part_ncep2.nc from the
NCEP Reanalysis (NCEP2) web site. It is located in folder adv_unix/data. A header dump i.e.
ncdump -h pmsl_198007_part_ncep2.nc, indicates that the pressure variable is named

mslp and has units of Pa (we will rescale to hPa). There are 16 maps from July 1 1980 OOUTC
- July 4 1980 18UTC.

Hence we may decode all of the maps in the NetCDF file with the command:

read_nc2cmp -i ../data/pmsl_198007_part_ncep2.nc -o pmsl_ncep2.cmp \

-u mslp -r NCEP2 -v PMSL -s 0.01

Note: \ is the C-shell continuation character.

The multi-map CMP (conmap) file is named pmsl_ncep2.cmp and contains 16 maps.

The individual CMP headers may be listed with:

splitcon -L pmsl_ncep2.cmp

We may obtain the individual maps as separate files with:

splitcon -n -l pmsl_ncep2.cmp

The CMP files are: pmsl.ncep2.1980070100.cmp - pmsl.ncep2.1980070418.cmp

We can take the average of these 16 maps with:

statconmap pmsl.ncep2.198007*.cmp 1 ave.cmp

The '1' indicates that the output CMP file (ave.cmp) is an average file.

We might want to express a given map as an anomaly from this average (usually we would

use a longer averaging period). This can be achieved by:

 16

conmanip2 -s pmsl.ncep2.1980070218.cmp ave.cmp diff.cmp

The option -s is 'subtract' - for usage: conmanip2

In this example diff.cmp is the anomaly for July 2 1980 18UTC

 i.e. (map at this time) - (average of 16 maps).

We can produce a southern hemisphere plot of the average map with:

plot_ave.csh ave.cmp

 17

Note: For polar stereographic plots, there is a plotting glitch if lon 0 is not

duplicated as lon 360. The program fixcon (for usage: fixcon) will duplicate the lon 0

at lon 360.

fixcon -d diff.cmp diff.cmp

fixcon -d ave.cmp ave.cmp

 18

Similarly a plot over the Australian region is created with:

plot_ave.aus.csh ave.cmp

A plot of the anomaly (difference) map for July 2 1980 18UTC is produced by:

plot_diff.aus.csh diff.cmp

 19

A plot of the actual gridpoint values of the anomalies for this particular time

may be created with ausmap, using the raster (-X) and print (-P) options:

ausmap -X -P -2 -s diff.cmp < iaus.raster.diff

g2ps -c gmeta

convert -trim -density 100 g.ps gdiff_raster.png

 20

Perhaps we want to use the anomaly map with a package like GrADS.

We can convert the CMP file (diff.cmp) to a NetCDF file by:

cmp2cdl4 -n nmlist.txt -i diff.cmp -o j.cdl

ncgen -o diff.nc j.cdl

See the namelist file (nmlist.txt) for appropriate NetCDF attribute

values. These need to be changed depending on the variable and data set. cmp2cdl4 is a

recently written program so the documentation is sparse.

The NetCDF file (diff.nc) can read by GrADS:

grads

(a graphics window will open)

At the grads prompt (ga->) open the NetCDF file (diff.nc):

sdfopen diff.nc

 21

To check the file information:

q file

This gives a listing:

File 1 :

 Descriptor: diff.nc

 Binary: diff.nc

 Type = Gridded

 Xsize = 144 Ysize = 73 Zsize = 1 Tsize = 1

 Number of Variables = 1

 diff_mslp 0 -999 diff_MSLP

The GrADS variable is named diff_mslp (diff_MSLP is the long NetCDF name).

To display the single map:

d diff_mslp

To exit grads: quit

 22

An example of Generic Mapping Tools (GMT)

See folder adv_unix/gmt and the C-shell script: run-gmt.eg.txt

Also see Part 2.

Taken from GMT Tutorial

(1) Topography of Rocky Mountains

grdimage us.nc -JM6i -P -B2 -Ctopo.cpt -V -K > ! topo.ps

convert -trim topo.ps topo.png

 23

(2) Topography of Rocky Mountains plus artificial illumination based on
gradient

grdgradient us.nc -Ne0.8 -A100 -M -Gus_i.nc

grdimage us.nc -Ius_i.nc -JM6i -P -B2 -Ctopo.cpt -K > ! topo2.ps

convert -trim topo2.ps topo2.png

 24

(3) Tsunami earthquakes in Japan

Size fof circle reflects magnitude and colour is measure of depth

We will follow conventional color schemes for seismicity and assign red to shallow
quakes (depth 0-100 km),

green to intermediate quakes (100-300 km), and blue to deep earthquakes (depth 300
km).

Use UNIX awk command to extract the desired columns from a historical database
(text format).

$5 refers to the 5th column etc., and NR is the current record number):

Historical Tsunami Earthquakes from the NGDC Database

Year Mo Da Lat+N Long+E Dep Mag

1987 01 04 49.77 149.29 489 4.1

1987 01 09 39.90 141.68 067 6.8

...

The output of awk is:

149.29 49.77 489 0.082

141.68 39.90 067 0.136

awk '{if (NR > 3) print $5, $4, $6, 0.02*$7}' quakes.ngdc >! quakes.d

pscoast -R130/150/35/50 -JM6i -B5 -P -Ggrey -Lf134/49/42.5/500 -K > ! map.ps

psxy -R -J -O -Cquakes.cpt quakes.d -Sci -Wthinnest >> map.ps

convert -trim map.ps map.png

 25

