

A three-dimensional spherical trajectory algorithm: traj3d

Ian Simmonds and Kevin Keay

School of Earth Sciences

The University of Melbourne 3010 Australia

Version 1.0

December 22 2009

 2

Contents

1. Introduction

2. Running the program

3. Description of namelist parameters for trajectory program (traj3d)

3.1 Auxiliary 2D variables

3.2 Auxiliary 3D variables

4. Some examples

4.1 Multiple levels – 3D

4.2 Single level – 2D

4.2.1 Multiple levels run in 2D mode

4.2.2 10 m surface winds – 2D

4.3 Multiple levels with auxiliary variables

5. Preliminaries

5.1 Compilation of traj3d

5.2 Output trajectory file (NetCDF)

5.3 Plotting of trajectories – NCAR Graphics/NCL

5.3.1 tnc2mpl/kmapline

5.3.2 NCL

5.4 Conversion of NetCDF to CMP format

5.5 Conversion of GRIB to CMP conversion

5.6 CMP format description

5.7 MPL format

6. Utilities

6.1 read_nc2cmp: Converts NetCDF to CMP

6.2 datetraj: Generates a sequence of time steps

6.3 tnc2mpl: Converts output NetCDF trajectory file to MPL format

6.4 mapmanip: Extracts trajectories from a MPL file

6.5 kmapline: Reads a MPL file and plots with NCAR Graphics/NCL

6.6 Xconv

6.7 NCAR Graphics/NCL

7. Acknowledgements

8. References

 3

1. Introduction

Parcel trajectories are often calculated to obtain an appreciation of the history of air

masses (e.g. Fuelburg et al., 1996). The direction and length of trajectories are useful

in diagnosing processes that may affect particular air masses under certain conditions.

In this regard it is important that parcel trajectories are determined accurately.

 The three-dimensional (3D) algorithm presented here (traj3d) builds on the

two-dimensional (2D) model of Law (1993) and reported in application by Perrin and

Simmonds (1995). From a specified parcel location in the atmosphere, xn at time n, a

finite integral is solved to advect the parcel and generate the trajectory path. Given the

3D wind v(xn) the governing prognostic equation for the trajectory path over a short

time interval ∆t is xn+1 = xn + v ∆t . The wind at a given point is found by cubically

interpolating from a spatial grid then linearly in time. For back trajectories the wind

direction is reversed. The finite integral is solved using a fourth-order Runge-Kutta

scheme to obtain an estimate of the wind. This method is considerably more accurate

for trajectory calculations than a simple first-order approach. For mathematical details

about the 3D algorithm see Noone and Simmonds (1999) and Barras and Simmonds

(2009).

 We present an implementation of the 3D algorithm in Fortran 77 that is

suitable for any platform given an appropriate compiler. A precompiled Linux version

is also available. The input to the program is a simple binary format referred to as

CMP. At present the input data (usually 3D winds) are limited to constant pressure

levels (e.g. 1000, 925, 850 hPa etc) as is the case with the commonly available

reanalysis products e.g. NCEP reanalysis. The output of the program is a NetCDF file

(and therefore NetCDF libraries need to be accessible for compilation) and this may

be imported into many software packages e.g. Matlab, NCL, for subsequent analysis

and plotting. We include some utilities to convert from NetCDF (a common format for

3D meteorological fields like winds) to CMP as well as plotting the trajectories based

on NCAR Graphics/NCL.

2. Running the program

Firstly, the program traj3d needs to be compiled or a suitable binary version installed

– see Section 5.1.

Secondly, the relevant CMP data files need to be available. This will probably require

a conversion from NetCDF to CMP. In addition auxiliary 2D and 3D fields may be

prepared.

Thirdly, a Fortran namelist file should be set up to control the behaviour of the

program. Normally this is to compute the 3D trajectories based on the input CMP files

containing the wind fields (U, V, W) with any (optional) auxiliary variables

interpolated to the trajectory locations.

Then to run the program:

traj3d namelistfile

e.g. traj3d input_backward_ncep.4.nml

 4

During execution some information and other diagnostic messages will appear on the

screen. Some of these are related to issues like the need to reverse the reading of level

data if the levels are not arranged in increasing order or excluding locations if they are

outside of the grid. If the program completes successfully then an output NetCDF file

will be created. This contains the input locations (start or end depending on the value

of the parameter forward) and the trajectory variables: longitude, latitude, level and

optionally date. If auxiliary variables were selected then these will also appear in the

NetCDF file.

If the diagnostic options debug and debug2 have been activated then there will be

additional files (fort.*) and datetraj.txt.

3. Description of namelist parameters for trajectory program (traj3d)

The program is controlled by a Fortran namelist file which contains a list of

parameters and their values. This is a text file of the form:

$traj3d

parameter1=value1

parameter2=value2

parameter3=value31,value32, parameter4=’value4’

…

$end

A parameter could be a single number, an array of numbers or a character string

e.g. x = 3.45
 vec=1.2,-3.8,10.1
 label= 'Some text'
 A line may contain more than one parameter

e.g. x = 3.45, vec=1.2,-3.8,10.1, label= 'Some text'

A description of these parameters is given in Table 1. The parameters in this table are

sufficient to compute trajectories from input CMP data files containing the wind fields

(U,V,W) organised by levels. Note: it is assumed that U and V are in m/s and W is in

Pa/s. For 2D trajectory computation the W field is not used (or may be omitted from

the input file).

 5

Table 1 Namelist parameters for traj3d

Parameter Description Value Default Comments
traj2d Turns on 2D

trajectory

computation (default

is 3D trajectory

computation)

.true. or

.false.

.false. Use with a single level (nlev=1) or for

computing 2D trajectories with multi-level

data (nlev > 1) For a single level it may

be desirable to set the parameters

longlev1 and levunit1
debug

Turns of diagnostic

information. See files:

fort.21:

fort.22:

If ncdate=.true.:

fort.2: Flag, tsdate

(flag: 0 forward 1

backward)

datetraj.txt: List of

dates for each output

time step

.true. or

.false.

.false. Use for checking data input

debug2

Turns on additional

diagnostic

information. See file:

fort.24:

.true. or

.false.

.false. Requires debug=.true. too

forward

Controls the direction

(forward or

backward) of

trajectories

.true. or

.false.

.true. Set to .false. for computing backward

trajectories

delt

Time step – interval

between output

trajectory points – in

seconds

Integer 3600 (1 hour)

 6

nleng Path length of output

trajectory in hours

 144 (6 days)

nslice Time slices per input

CMP file

Integer 1 For this version use only one time slice per

CMP file (nslice > 1 has not been tested)
ntime

Time interval between

slices of input CMP

data as a mutiple of
delt

Integer 6 (6 x delt = 6 hours)

nlev Number of levels per

input time slice. For

the computation of

2D trajectories

specify nlev=1 and

traj2D=.true. Note:

for 3D trajectories it

is recommended to

have nlev ≥ 4. The

cases nlev=2,3 are

padded to 4 levels but

the results may not be

optimum.

Integer 0 Please specify the actual number of levels

e.g. nlev=7

levs A list of level values

in the same order as

in the input CMP

data. These are

expected to be in Pa;

see also lscale

Integer 0 Please specify the levels e.g.
levs=100000,92500,85000,70000,

The level values are in Pa; if they are in

hPa also set lscale = 100

lscale Scales the level

values (levs) by

lscale e.g. hPa to Pa,
lscale = 100

Real 1 (levels in Pa) For levels in hPa set lscale = 100 e.g.
levs = 700,850,925,1000, lscale =

100

 7

headcheck Checks that the level

value in the CMP

header matches the

expected level as

defined by the

parameters nlev,
levs

.true. or

.false.

.true. Set to .false. with traj2d=.true. or if

the input CMP data has non-standard

headers

datadir

Data directory for

input CMP files

Character None e.g.
datadir='../experiments/ncep/winds'

filefile

Text file containing a

list of input CMP

filenames that reside

in the directory

specified by datadir

The order of these

filenames must be

consistent with

forward i.e. for

backward trajectories

(forward=.false.)

the CMP files should

be listed in reverse

time order.

The input CMP files

contain the wind

fields (U,V,W)

organised by levels.

Note: it is assumed

that U and V are in

m/s and W is in Pa/s.

If traj2d=.false.

Character*80 None e.g. filefile='filelist_winds'

containing:
1996042000.cmp

1996041918.cmp

1996041912.cmp

…

1996041412.cmp

1996041406.cmp

1996041400.cmp

These are located in the directory specified

by
datadir='../experiments/ncep/winds'

 8

then the W field is not

used (or may be

omitted from the

input file).
locfile

Text file containing a

list of trajectory start

(forward) or end

(backward) locations.

Comments begin with

a #; blank lines are

permitted.

There is one location

per line comprising:

longitude in degrees

(real), latitude in

degrees (real), level

(default is in Pa)

(integer) and label (up

to 80 characters).

Note that if the level

may be given in hPa

if hlscale = 100

Character*80 None e.g. locfile='melbourne_locs'

containing:

Initial trajectory points for

low-tropospheric air over Melbourne

10.0 -45.0 100000 Pacific1

10.0 -45.0 92500 Pacific1

10.0 -45.0 85000 Pacific1

10.0 -45.0 70000 Pacific1

145.0 -37.7 100000 Melbourne

145.0 -37.7 92500 Melbourne

145.0 -37.7 85000 Melbourne

145.0 -37.7 70000 Melbourne

hlscale Scales the level

values in the location

file by lscale e.g. hPa

to Pa, hlscale = 100

Real 1 (levels in Pa) For location levels in hPa seth lscale = 100

e.g.

10.0 -45.0 925 Pacific1

outfile Output NetCDF file

containing the

trajectory data for

each input location in

locfile

Character*80 e.g. outfile = ‘study1.nc’

ncdate Adds a date variable .true. or .false. At this stage the date variable is only

 9

(ddatet) to the output

NetCDF file (see

outfile)

.false. defined for delt ≥ 3600 (1 hour)

usehdate The start or end date

(tsdate) is read from

the first CMP header

of the first file from

filefile using the

Fortran format given

by dfmt

.true. or

.false.

.false. If ncdate=.true. and usehdate=.false.

then tsdate needs to be set

dfmt Fortran format for

reading tsdate from

CMP header (see

usehdate)

Character*80 ‘(40x,I4,2I2,1x,I4)’ This reads yyyy,mm,dd,hhhh ==

YYYYMMDDHHHH (all integers)

Currently HHHH is effectively HH00 e.g.
199604201800
Requires usehdate=.true.

tsdate Specified start or end

date of trajectories in

YYYYMMDDHHHH

(or

YYYYMMDDHH)

Character*12 None e.g. tsdate = '199604201800' (or

'1996042018')

Requires ncdate=.true. and
usehdate=.false.

gauss Intended for a 2D

surface wind field e.g.

10 m winds

.true. or

.false.

.false. Use with traj2d=.true.

levlong1 Output NetCDF ‘long

name’ for 2D surface

wind field

Character*80 None Use with traj2d=.true.

e.g. levlong1='10 m winds'

levunit1 Output NetCDF units

for 2D surface wind

field

Character*80 None Use with traj2d=.true.

e.g. levunit1= '10 m'

 10

3.1 Auxiliary 2D variables

In addition to computing trajectories based on the wind fields (U,V,W) it is

possible to find the value of an auxiliary field. Generally such variables are

characteristic of the environment that the trajectory traverses.

This is accomplished by specifying the parameter ntr2 > 0. These fields are either

truly 2D e.g. MSLP, or are extracted levels from a 3D variable that may be

regarded as 2D for input purposes. There should be a one-to-one correspondence

in time of these files with the input CMP files i.e. the entries in the files filefile

and filefile2 should be paired. Table 2 describes the additional parameters

required for processing the 2D auxiliary variables.

 11

Table 2 Namelist parameters for auxiliary 2D variables

Parameter Description Value Default Comments
ntr2 Number of 2D auxiliary

variables to be added to

output NetCDF file (see

outfile). These are usually

2D variables e.g. MSLP.

Integer 0 Set ntr2 > 0 to enable output of auxiliary

2D variables

datadir2 Data directory for

auxiliary CMP files.

Character None e.g.
datadir2='../experiments/ncep/aux_2D'

filefile2 Text file containing a list

of auxiliary 2D CMP

filenames that reside in

the directory specified by

datadir2.

There should be a one-to-

one correspondence of

these files with the input

CMP files i.e. the entries

in filefile and

filefile2 should be

paired.

Each CMP file contains a

set of 2D data slices.

The order of these

filenames must be

consistent with forward

i.e. for backward

trajectories

(forward=.false.) the

CMP files should be

Character*80 None e.g. filefile2 = 'filelist_tr2d'

containing:
pmsl.1996042000.cmp

…

pmsl.1996041400.cmp

 12

listed in reverse time

order.
tr2name Output NetCDF name(s)

for auxiliary 2D

variable(s)

Character*80 None e.g. tr2name = 'MSLP'

tr2long Output NetCDF ‘long

name(s)’ for auxiliary 2D

variable(s)

Character*80 None e.g. tr2long = 'Mean sea level
pressure'

tr2unit Output NetCDF units for

auxiliary 2D variable(s)

Character*80 None e.g. tr2unit = 'hPa'

 13

3.2 Auxiliary 3D variables

The inclusion of 2D auxiliary variables may be extended to the 3D situation. In

some contexts such a variable may be referred to as a ‘tracer’ if it is a quantity

being carried along with the air parcel. More generally such variables are

characteristic of the environment that the trajectory traverses.

In this case each CMP file contains a set of 3D data slices with the same level

structure as the input CMP files i.e. each 3D auxiliary variable has the same levels

as the winds fields. This is accomplished by specifying the parameter ntr3 > 0.

There should be a one-to-one correspondence in time of these files with the input

CMP files i.e. the entries in the files filefile and filefile3 should be paired.

Table 3 describes the additional parameters required for processing the 3D

auxiliary variables.

 14

Table 3 Namelist parameters for auxiliary 3D variables

Parameter Description Value Default Comments
ntr3 Number of 3D auxiliary

variables to be added to

output NetCDF file (see

outfile). These should

have the same levels as

the input CMP data.

Integer 0 Set ntr3 > 0 to enable output of auxiliary 3D

variables

datadir3 Data directory for

auxiliary CMP files.

Character None e.g.
datadir3='../experiments/ncep/aux_3D'

filefile3 Text file containing a list

of auxiliary 3D CMP

filenames that reside in

the directory specified by

datadir3.

There should be a one-to-

one correspondence of

these files with the input

CMP files i.e. the entries

in filefile and

filefile3 should be

paired.

Each CMP file contains a

set of 3D data slices with

the same level structure

as the input CMP files.

The order of these

filenames must be

consistent with forward

i.e. for backward

Character*80 None e.g. filefile3 = 'filelist_tr3d'

containing:
1996042000.cmp

…

1996041400.cmp

Each file has the variables T and Q with the

same level structure as the input CMP files

specified by:
datadir='../experiments/ncep/winds'

 15

trajectories

(forward=.false.) the

CMP files should be

listed in reverse time

order.
tr3name Output NetCDF name(s)

for auxiliary 3D

variable(s)

Character*80 None e.g. tr3name = 'T', 'Q'

tr3long Output NetCDF ‘long

name(s)’ for auxiliary 3D

variable(s)

Character*80 None e.g. tr3long = 'Temperature', 'Water
vapour mixing ratio'

tr3unit Output NetCDF units for

auxiliary 3D variable(s)

Character*80 None e.g. tr3unit = 'Kelvin', 'g/kg'

 16

4. Some examples

4.1 Multiple levels – 3D

The usual application of the program is for the computation of 3D trajectories. For

optimum results it is recommended that a minimum of four levels be used. If

possible use the order of 10 levels as is common with many reanalysis data sets.

In this example we have wind fields (U,V,W) from NCEP reanalysis data on seven

levels. There are more levels available but we wish to use water vapour mixing

ratio as an auxiliary variable and this is only defined up to 200 hPa (see Section

4.3).

We want to compute 6-day backward trajectories for two locations with the

trajectories arriving at all seven levels (see: melbourne_locs8).

The namelist file (input_backward_ncep.8.nml) is:

$traj3d

 headcheck= .true.

 ncdate= .true.

 usehdate = .true.

 forward = .false.

 delt = 3600

 nleng = 144

 locfile = 'melbourne_locs8'

 filefile = 'filelist_winds'

 outfile = 'test_ncep.8.nc'

 datadir = '../experiments/ncep/lev7'

 nslice = 1

 ntime = 6

 nlev=7,

 levs= 100000,92500,85000,70000,50000,30000,20000

$ END

The input CMP wind data files are located in ../experiments/ncep/lev7 and the

filenames are listed in filelist_winds; there is one file per time step.

To compute the trajectories:
 traj3d input_backward_ncep.8.nml

The trajectories are written to the NetCDF file test_ncep.8.nc.

We may plot all of the trajectories by converting the NetCDF file to a MPL file

(tnc2mpl) and then plotting with kmapline:

 tnc2mpl test_ncep.8.nc (this creates test_ncep.8.mpl)
 kmapline -n -0.010,60 -s "1,1,1, 15,60,3, 5,5,1, 0,0,0" -S

test_ncep.8.mpl

The NCAR Graphics meta file (gmeta) from kmapline may be converted to

Postscript or PNG:
 g2ps gmeta

 gv g.ps

 convert –trim –density 120 g.ps g,png

 display g.png

Note: convert and display are (free) ImageMagick tools that are available on

most Linux/UNIX platforms. Figure 1 shows the plot of the trajectories.

 17

Figure 1: Trajectories from the example in section 4.1.

4.2 Single level – 2D

The computation of 2D trajectories may be accomplished using the parameter

traj2d=.true. in conjunction with multi-level data. In this case if a number of

locations at different levels are specified then the trajectories will remain at those

levels. These input locations must be on levels that exist in the data e.g. if the data

contains levels 1000, 925, 850, 700 hPa then a location like: 120.0 65.0 92500

Test1 is valid but: 120.0 65.0 97500 Test1 is not. Alternatively the input data may

consist of a single level (nlev=1) e.g. 500 hPa, 10 m. In the case of surface winds

the descriptive parameters levlong1 and levunit1 may be specified.

 18

4.2.1 Multiple levels run in 2D mode

This is the same as the example in Section 4.1 except we set:
 traj2d= .true.

The output NetCDF file will show the level remaining constant for each trajectory

e.g. if the location is given as 925 hPa then the (2D) trajectory will be confined to

this level. This is equivalent to setting nlev=1 and specifying a single level e.g.

925 hPa and running the program on data containing that single level. Figure 2

shows these 2D trajectories for comparison with the example in Section 4.1.

Figure 2: Trajectories from the example in Section 4.2.1.

 19

4.2.2 10 m surface winds – 2D

In this example we wish to compute 4-day backward trajectories for 10 m

surface winds which happen to be on a Gaussian (irregular) latitude) grid.

The namelist file (input_backward_ncep.0.nml) is:

$traj3d

 traj2d = .true.,

 headcheck= .false.

 ncdate= .true.

 usehdate = .false.

 tsdate= '1997060700'

 gauss= .true.

 levlong1= '10 m winds'

 levunit1= '10 m'

 forward = .false.

 delt = 3600

 nleng = 96

 locfile = 'melbourne_locs.2d'

 filefile = 'filelist_2d'

 outfile = 'test_2d.nc'

 datadir = './'

 nslice = 1

 ntime = 6

 nlev=1,

 levs= 99999

$end

Note that we set traj2D=.true. and gauss=.true. (due to the Gaussian

grid).

The CMP headers in this particular case are non-standard so we turn off the

header check i.e. headcheck=.false. Futhermore we set the NetCDF level

variable (lev) to have the correct attributes i.e. we set levlong1 and

levunit1.

In the location file (melbourne_locs.2d) we have entries like:
145.0 -38.3 99999 Melbourne

i.e. we are using level 99999. We can use any level as long as it is consistent

between the namelist and location files. We are also accessing CMP data

files in the current directory.

After running the program:
 traj3d input_backward_ncep.0.nml

we obtain a NetCDF file which has the 2D trajectories at a level of 99999,

which corresponds to 10 m. The trajectories are shown below in Figure 3.

Note: In this example:
kmapline -n -0.010,60 -s "1,1,1, 15,60,3, 5,5,1, 0,0,0"

test_ncep.0.mpl < imap.sh25

where:

File: imap.sh25

ST

-90,0

n

-25,270

-25,90

 20

-25,180

-25,0

n

y

c

y

30

y

Figure 3: Trajectories from the example in Section 4.2.2.

4.3 Multiple levels with auxiliary variables

This is essentially a variation on the example in Section 4.1. In this case we are

‘tacking on’ some auxiliary variables that are interpolated to the trajectory

locations at each time step. In some situations these variables may be referred to as

 21

‘tracers’ but generally they are characteristic of the environment that the trajectory

traverses. For illustration we will add one 2D field and two 3D fields.

First we make one change to the namelist file from the example in 4.1:

 outfile = 'test_ncep.9.nc'

and save it as input_backward_ncep.9.nml.

The new namelist file (input_backward_ncep.9.nml) contains two extra sections.

The first one is for 2D auxiliary fields:

 datadir2 = '../experiments/ncep/lev7/aux2'

 filefile2 = 'filelist_aux2'

 ntr2 = 1

 tr2name = 'MSL'

 tr2long = 'Mean sea level pressure'

 tr2unit = 'hPa'

There is one 2D field (ntr2=1): mean sea level pressure.

The second is for 3D auxiliary fields:

 datadir3 = '../experiments/ncep/lev7/aux3'

 filefile3 = 'filelist_aux3'

 ntr3 = 2

 tr3name = 'T', 'ABSV'

 tr3long = 'Temperature', 'Absolute vorticity'

 tr3unit = 'Kelvin', '/s'

There are two 3D fields: temperature and water vapour mixing ratio.

After running the program:

 traj3d input_backward_ncep.9.nml

we see that the output NetCDF file (test_ncep.9.nc) will contain the same

trajectory variables as before (test_ncep.8.nc) but with additional variables

(T,ABSV) appended. The plot of the trajectories will be identical to that shown in

Section 4.1 (Figure 1).

5. Preliminaries

This section provides information on compiling traj3d and aspects of the data formats,

including conversion from NetCDF to CMP.

5.1 Compilation of traj3d

Follow these steps to install traj3d:

1. Firstly, you will need to contact Ian Simmonds

(simmonds@unimelb.edu.au) for a username and password.

2. Download the software package:

http://www.earthsci.unimelb.edu.au/~kevin/traj3d_1.0/ztraj3d.V1.0.zip

 (about 1.5 MB)

3. Optionally download the examples and data:

 22

http://www.earthsci.unimelb.edu.au/~kevin/traj3d_1.0/ztraj3d.V1.0_examp

les+data.zip

 (about 34 MB)

4. unzip ztraj3d.V1.0.zip into a convenient directory (e.g. traj3d.dir).

See: README.package and the README.* files throughout the package.

The folder bin contains precompiled Linux binaries that should work on

many Linux operating systems. Otherwise you will need to compile the

programs.

5. The compilation of traj3d and the utilities is achieved via the C-shell

script run-make in folder src. On a typical Linux OS: run-make

This script runs a set of Makefiles (one per program) based on the Fortran

77 compiler g77 (usually duplicated as f77). If you use another Fortran

compiler you may need to change some of the compiler options (see the

FFLAGS variable in a Makefile). Note that NetCDF libraries need to be

available on your OS. For the utility kmapline you will need NCAR

Graphics or NCL. Finally, the binaries in the folder bin may be copied to

an appropriate location on your network i.e. somewhere in your path.

6. Optionally:

unzip ztraj3d.V1.0_examples+data.zip into the same directory

specified in step 4 (e.g. traj3d.dir). Look at the README* files in the

folder examples and its subdirectories for information about the examples.

5.2 Output trajectory file (NetCDF)

The trajectories are output to a NetCDF file. This has the advantage of being

compatible with many common software packages e.g. Matlab, NCL.

5.3 Plotting of trajectories – NCAR Graphics/NCL

There are potentially many methods of plotting the trajectories in various software

packages e.g. NCL, Matlab. We will outline two approaches, both are connected

with NCAR Graphics/NCL.

5.3.1 tnc2mpl/kmapline
Our in-house method is to convert the NetCDF file to a MPL file using

tnc2mpl (Section 6.3) and then plot this latter file with kmapline (Section

6.5), a program based on NCAR Graphics which is now part of NCL. See

the main examples in Section 4.1 with additional material in Section 6.5.

5.3.2 NCL

Another approach is to use NCL which is a toolkit based on NCAR

Graphics. There are probably suitable scripts on the NCL web site that

could be modified for this purpose. See Section 6,7 for details about

downloading NCL.

5.4 Conversion of NetCDF to CMP format

A key step in computing trajectories is to convert your data to CMP format

(Section 5.6). This is a simple binary format that was originally designed to work

with NCAR Graphics. It is also used with the University of Melbourne cyclone

 23

tracking software and occasionally used by CSIRO in Australia where it is referred

as CIF.

Note: if your data is in GRIB format it may be convenient to use a free tool like

Xconv to convert from GRIB to NetCDF first, then convert to CMP – see Section

5.5.

The conversion from NetCDF to CMP is performed by read_nc2cmp – see Section

6.1. Essentially you need to specify the dimensions and variables names as well as

the desired level indices as arguments to the program. This information is obtained

via a NetCDF file header dump using the NetCDF utility ncdump

e.g. ncdump –h test.nc

If the dump shows that the level variable is called (say) p then:
 ncdump –v p

will print out the level values e.g. p = 1000, 925, 850, 700, 600, 500

The following script (C-shell) using NCEP Reanalysis 2.5 x 2.5 degree 6 hourly

data is an example of the conversion process.

#!/bin/csh -f

read_nc2cmp -i 199604.winds.ncep.nc -d "longitude,latitude,t" -l p

-L "1,2,3,4" -u "U,V,VVEL" -v "U,V,W" -U "'m/s','m/s','Pa/s'" -G

-S -t "1996041400,1996042000" \

 -p ../udunits.dat

exit

We are extracting U,V,W (NetCDF names U,V,VVEL) for levels

1000,925,850,700 (indices 1,2,3,4 of the NetCDF level variable p) and the time

range 1996041400 to 1996042000. Each time step (this is 6 hourly data) is output

as a separate CMP file i..e. 1996041400.cmp, 1996041406.cmp, …,

1996042000.cmp. The –p option refers to a local copy of the UDUNITS data file

udunits.dat if it is not accessible via a normal network path.

The file 199604.winds.ncep.nc was in fact a multi-level GRIB file converted to

NetCDF with grb2nc (based on convsh, the shell version of Xconv):

 grb2nc –i 199604.grb –o 199604.winds.ncep.nc

5.5 Conversion of GRIB to CMP conversion

If you have GRIB data you may be able to use the freely available utility Xconv

(xconv)to convert your GRIB file to a NetCDF file – see Section 6.1. Then you

can convert this NetCDF file to CMP format with read_nc2cmp – see Section 5.4.

5.6 CMP format description

For much of our in-house work at the University of Melbourne it is convenient to

take a complex binary file e.g. NCEP Reanalysis NetCDF, and convert it o a

simple binary format which we call conmap (CMP) format (also known as CIF at

CSIRO in Australia). This is capable of representing a variable e.g. pressure, on a

longitude-latitude grid. A fragment of code to read a CMP file) given below. The

lines in bold represent a block of information for a given map (i.e. grid or field). A

set of maps consists of a concatenation of such blocks.

 implicit none
 real xmiss

 24

 parameter (xmiss= 99999.9) ! conmap (CMP) missing value code

 integer num

 parameter(num= 200) ! Max. size of lat.-lon. grid

 real xlats(num),xlons(num) ! Arrays for lats and lons

 real dat(num,num) ! Array for input data

 character*80 head1 ! Header (description)

 character*80 infile ! CMP file name

 integer i,j,nlats,nlons

 open(1,file=infile,form='unformatted')

 read(1)nlats

 read(1)(xlats(i),i=1,nlats)

 read(1)nlons

 read(1)(xlons(i),i=1,nlons)

 read(1)head1

 read(1)((dat(i,j),i=1,nlons),j=1,nlats)

 close(1)

 write(*,'('' No. lats, no. lons: '',2I6)')nlats,nlons

 write(*,'(1X,A)')head1

We use a parameter statement to set the maximum size of our longitude and

latitude arrays to 200 points (num). Thus our two-dimensional data array (matrix)

named dat is a grid of maximum size 200 x 200 points

The integers nlons and nlats hold the actual number of longitudes and latitudes

e.g. nlons = 144, nlats = 73

The array xlons holds the actual longitude values e.g. 0.0, 2.5, … and the array

xlats holds the actual latitude values from south to north e.g. –90.0, -87.5, …

The array xlats is read using an implied DO loop:

 read(1)(xlats(i),i=1,nlats) is equivalent to
 read(1)xlats(1),xlats(2),…,xlats(nlats)

The array xlons is read in a similar way. There is an 80 character text header

(head1) containing some information about the data.

Finally we read in the two-dimensional array dat using a pair of ‘nested’ implied

DO loops:
 read(1)((dat(i,j),i=1,nlons),j=1,nlats)
where i is longitude index and j is latitude index.

This works from the ‘outside’ to the ‘inside’ loop. We start with j = 1 and read

the inner loop (dat(i,1),i=1,nlons). Then j = 2 and we read

(dat(i,2),i=1,nlons) and so on.

For each latitude index j we read the values of dat at each longitude index i i.e. we

read the data on latitude circles from south to north. If we specified each array

element individually we would need:
 read(1)dat(1,1),dat(2,1),…,dat(nlons,1),

 dat(1,2),dat(2,2),…

 dat(nlons,2),…,dat(1,nlats),dat(2,nlats),…dat(nlons,nlats)

To write out a CMP file we just replace read by write in the above code.

The CMP format has a code to represent missing or undefined data (99999.9) as

set by xmiss. This is useful to process files with missing data since we want to

exclude these from our summations etc.

If we expect missing values then we should check for them.

This piece of code computes the average of non-missing (‘live’) values at each

gridpoint:

 25

 do j=1,nlat

 do i=1,nlon

 if (dat(i,j).eq.xmiss)then

 nmiss= nmiss + 1 ! Count of missing values (for

 ! information only)

 else

nsum(i,j)= nsum(i,j) +1 ! Count of ‘live’ values at this

 ! gridpoint

 sum(i,j)= sum(i,j) + dat(i,j) ! Sum of ‘live’ values

 endif

 enddo

 enddo

 do j=1,nlat

 do i=1,nlon

 ave(i,j)= sum(i,j)/nsum(i,j) ! Average at the gridpoint (i,j)

 enddo

 enddo

5.7 MPL format

The MPL (binary) format comprises an 80 character header, the number of time

steps in a trajectory and then the latitude and longitude data. This code fragment

summarises the MPL format:
 implicit none
 integer mtraj,mt

 parameter (mtraj=100,mt=500)

 real tlats(mtraj,mt)

 character*80 head

 integer np,it,i

 it= 4 ! e.g. trajectory number 4

 read(4)head

 read(4)np

 read(4)(tlats(it,i),i=1,np)

 read(4)(tlons(it,i),i=1,np)

A set of trajectories are represented by concatenating blocks of information

corresponding to the lines highlighted in bold.

6. Utilities

This is a resource of useful utilities that may assist to converting the input data e.g.

NetCDF, to CMP or for generating the filename containing a list of CMP files used by

the filefile parameter in traj3d.

6.1 read_nc2cmp: Converts NetCDF to CMP

The program read_nc2cmp will read 'usual' NetCDF files that have a variable

var (time, level, lat, lon)

in this order as indicated by the output of ncdump -h.

Note that the dimensions and variables may have different names

e.g. longitude instead of lon.

 26

To compile:

g77 -o read_nc2cmp{,.f} -lnetcdf -ludunits

i.e. you need the NetCDF and UDUNITS libraries.

You also need the include files netcdf.inc and udunits.inc

If you type the name of the program you get a brief usage message:

read_nc2cmp

read_nc2cmp: Version 2.4 (Apr 14 2009)

 Usage: read_nc2cmp [--help][-D idbg][-i ncfile][-o cmpfile][-d
"lon,lat,time"]

 [-u uservars][-U vunits][-v vtypes][-l levelvars][-L ilev]

 [-g gridtype][-r rtype][-s uscal][-p udunits]

 [-m no_maps][-M "map1,map2"][-t "date1,date2"][-T "ttype"][-G][-

S]

 Options:

 D: 0= None 1= Basic 2= Verbose 3= Print dimension arrays to file

fort.10

 G: Duplicate data at lon to 360 (default: no)

 S: Output one file per time (default: all in one)

 T: ttype: CDO, fcst

 fcst: Adds 6 hr to date-time; use with NCEP/NCEP2 10m winds

 Note: Max. sizes (characters) of text variables

 gridtype: 10 rtype: 5 vtypes: 8 units: 8

 --help: Gives some examples

The -d option is set for NCEP and NCEP2 by default, assuming that the longitude,

latitude and time variables are named lon, lat and time.

You may need to give the location of the UDUNITS data file with the

-p option:

-p '/usr/local/etc/udunits.dat' or change the source code at line 172:

udpath= '/usr/local/etc/udunits.dat'

This is only necessary if the file is not in the usual place.

-D is the debug option; 3 prints the dimensions to a file called fort.10.

Note: For ERA-40 geopotential, the program will divide by g= 9.807 m s**-2 to

give geopotential height (m).

Example 1: NCEP mean sea level pressure (2D variable)

Consider the (edited) header dump of the NetCDF file slp.2004.nc i.e. ncdump -h

slp.2004.nc:

netcdf slp.2004 {

dimensions:

 27

 lon = 144 ;

 lat = 73 ;

 time = UNLIMITED ; // (1464 currently)

variables:

 float lat(lat) ;

 lat:units = "degrees_north" ;

 lat:actual_range = 90.f, -90.f ;

 lat:long_name = "Latitude" ;

 float lon(lon) ;

 lon:units = "degrees_east" ;

 lon:long_name = "Longitude" ;

 lon:actual_range = 0.f, 357.5f ;

 double time(time) ;

 time:units = "hours since 1-1-1 00:00:0.0" ;

 time:long_name = "Time" ;

 time:actual_range = 17557968., 17566746. ;

 time:delta_t = "0000-00-00 06:00:00" ;

 short slp(time, lat, lon) ;

 slp:long_name = "4xDaily Sea Level Pressure" ;

 slp:valid_range = 87000.f, 115000.f ;

 slp:actual_range = 92700.f, 111370.f ;

 slp:units = "Pascals" ;

 slp:add_offset = 119765.f ;

 slp:scale_factor = 1.f ;

 slp:missing_value = 32766s ;

 slp:precision = 0s ;

 slp:least_significant_digit = -1s ;

 slp:GRIB_id = 2s ;

 slp:GRIB_name = "PRMSL" ;

 slp:var_desc = "Sea Level Pressure\n",

}

To decode maps 5-8 of this mean sea level pressure file use the following

command:

read_nc2cmp -i slp.2004.nc -o out.cmp -u slp -r NCEP -v PMSL -s

0.01 -M "5,8"

The pressure variable is named slp (-u option).

We need to scale the pressure in Pa to hPa i.e. apply a scaler of 0.01 (-s option).

The -r and -v options are for setting the CMP header for the cyclone tracking

scheme.

The -M option gives the map range to be decoded i.e. maps 5-8.

The screen output is:

 NOTE: User scaler: 0.00999999978
 Output map range: 5 - 8

 NetCDF file opened successfully (ncid= 3)

 Inquiring about variables ...

 Reading longitudes ...

 Reading latitudes ...

 Reading times ...

 Reading attributes ...

 No. of maps to be extracted: 4

 Reading user variable ...

 28

 5:PMSL NCEP 20040102 0000 MB

2.5x2.5DEG

 6:PMSL NCEP 20040102 0600 MB

2.5x2.5DEG

 7:PMSL NCEP 20040102 1200 MB

2.5x2.5DEG

 8:PMSL NCEP 20040102 1800 MB

2.5x2.5DEG

 NetCDF file closed successfully (ncid= 3)

 Output conmap file: out.cmp

 Finished!

The file out.cmp contains the four decoded maps.

Example 2: Extraction of a single level from multi-level ERA-40 geopotential

height

The (edited) output from ncdump for hgt.200208.nc in folder ncdata is:

netcdf hgt.200208 {

dimensions:

 longitude = 144 ;

 latitude = 73 ;

 levelist = 23 ;

 time = UNLIMITED ; // (62 currently)

variables:

 short z(time, levelist, latitude, longitude) ;

 z:scale_factor = 7.53787087081502 ;

 z:add_offset = 241940.397676004 ;

 z:_FillValue = -32767s ;

 z:missing_value = -32767s ;

 z:units = "m**2 s**-2" ;

 z:long_name = "Geopotential" ;

}

There are 23 levels. If you use ncdump -v levelist then you can see the levels:

 levelist = 1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 150, 200, 250,
300, 400, 500, 600, 700, 775, 850, 925, 1000 ;

If you want the 500 hPa level then you require levelist(17).

Hence:

read_nc2cmp -i ncdata/hgt.200208.nc -o j.cmp -d

"longitude,latitude,time" -u z -D 3 -r ERA40 -l levelist -L 17

will decode the 500 hPa geopotential data (-r ERA40 will cause it to be divided by

g).

Example 3: Extraction of a set of levels form a multi-level NCEP wind file

read_nc2cmp -i 199604.winds.ncep.nc -d "longitude,latitude,t" -l p

-L "1,2,3,4" -u "U,V,VVEL" -v "U,V,W" -U "'m/s','m/s','Pa/s'" -G

-S -t "1996041400,1996042000" \

 29

 -p ../udunits.dat

The slash (\) is a line continuation character for the C-shell. The set of levels does

not have to be consecutive e.g. one may require –L "1,3,4,7,9".

See Section 5.2 for more details.

6.2 datetraj: Generates a sequence of time steps

This utility is useful for generating a sequence of time steps such as those of a

computed trajectory or the input data files. Currently the program can generate

time series for a time step of one hour or greater.

To compile: g77 –o datetraj datetraj.f

 For usage type: datetraj

 Usage: datetraj date0 tinc ndays

 date0: yyyymmddhh e.g 1997060100

 Note: Use a -ve value of tinc for backward trajectories

 Examples: datetraj 1997060100 6 4

 datetraj 2000020112 -6 5

 The list of dates is written to: datetraj.2.txt

 The backward flag (1= backward) and start/end dates

 are written to: datetraj.3.txt

This example generates the input time steps of a backward 4-day trajectory from 6-

hour data:

 e.g. datetraj 1996042000 -6 4

prints on the screen:

1996042000 1996041918 1996041912 1996041906 1996041900

1996041818 1996041812 1996041806 1996041800 1996041718

1996041712 1996041706 1996041700 1996041618 1996041612

1996041606 1996041600

In addition the following files are created.

File: datatraj.2.txt

 1 1996042000
 2 1996041918

 3 1996041912

 4 1996041906

 5 1996041900

 …

 13 1996041700

 14 1996041618

 15 1996041612

 16 1996041606

 17 1996041600

 File: datetraj.3.txt

 1 1996042000 1996041600

 30

The screen output may be of use in scripts. For instance you can create a file

containing the list of required data files (one per time step) using this C-shell (csh)

script:

set ff = ` datetraj 1996042000 -6 4` # Send screen output to $ff

@ nf = $#ff # Number of items in $ff

rm filelist_test # Ensure that filelist_test does not exist

@ i = 1

while ($i <= $nf)

 set f = $ff[$i]

 echo “$f.cmp” >> filelist_test # Add each filename (based on date

$f) to list

 @ i ++ # Increment counter i by one

end

The file filelist_test contains:

1996042000.cmp

1996041918.cmp

…

1996041600.cmp

6.3 tnc2mpl: Converts output NetCDF trajectory file to MPL format

This reads the output NetCDF from traj3d and outputs selected trajectories in

mapline (MPL) format for plotting by kmapline.

To compile: make tnc2mpl

For usage type: tnc2mpl

Usage: tnc2mpl [-{n,l,t} min[,max]] trajfile(s).nc

 Extract trajectory data from NetCDF file.

 -D Debug printout

 -n mini[,max] select trajectory range

 -l mini[,max] select length range

 -t mini[,max] select time (unlimited) range

 -p prints initial point for trajs

 -m Exclude missing values with code -999

 -o outfile (default: Input file with nc->mpl)

If no range is given, all are converted.

Output is appropriate for kmapline.

In this example we print out the initial point of each trajectory:

tnc2mpl -p test_ncep.1.nc

Here we exclude missing values (these are inserted into the NetCDF file if the

trajectory attempts to go outside a regional grid):

tnc2mpl -m test_ncep.1.nc

Note: The output MPL file will be called test_ncep.1.mpl.

 31

Here time steps 140-145 of trajectories 5-10 will be output to the MPL file

mytest.mpl:

tnc2mpl –l 140,145 –n 5,10 –o mytest.mpl test_ncep.1.nc

6.4 mapmanip: Extracts trajectories from a MPL file

This reads in a MPL file and outputs a selected trajectory to a new MPL file or

creates a text listing of the trajectories.

To compile: g77 –o mapmanip mapmanip.f

Usage: mapmanip [-dpF] [-o outmaplinefile] maplinefile

 Options:

 d: Debug - see: fort.21

 o: Output mapline file [default: manip.mpl]

 n trajno: Output specified trajectory

 p: Print mapline file in text format to: manip.lis

 F: Use input filename as header

 Example: mapmanip -p 1999020100.map (text output is to

manip.lis)

The main use of the utility is to produce a text listing of the trajectories in the MPL

file e.g. mapmanip –p test_ncep.1.mpl

See manip.lis for the text listing of these trajectories.

Another use is to output a single trajectory to a new MPL file

e.g. mapmanip –n 2 test_ncep.1.mpl (output trajectory 2 to manip.mpl)

 mapmanip –n 2 –o traj2.mpl test_ncep.1.mpl (output trajectory 2 to

traj2.mpl)

6.5 kmapline: Reads a MPL file and plots with NCAR Graphics/NCL

This utility reads a MPL file output from tnc2mpl and plots the trajectories using

NCAR Graphics/NCL. The options are intended for use with our cyclone tracking

software but are largely applicable to the trajectory situation. This utility is not

extensively documented and serves as a useful tool when no other is readily

available. A more flexible approach would be to investigate NCL directly.

To compile: make kmapline

For usage type: kmapline

Usage: kmapline [a][A fcol][C lcol][H "uhdr"]

 [I][c ccol,cthk][f fmapfile][g greyshade][L ltyp,lthk]

 [n fontsize,fontcol][p][s "sym_params"][Y hdry][GSN] mplfile [<

imapfile]

 Options:

 a: Fill in land areas

 G: Global CE projection

 N: Northern ST projection

 S: Southern ST projection

 A: fcol [3]: Land fill colour

 32

 C: lcol [1]: 1= Black 2= Light blue 3= Light grey

 4-67 : Dark blue -> Bright red

 c: ccol [3]: Coastline colour

 cthk [1]: Coastline thickness

 f: File with entries:

 mapfile,lcol,ltyp,lthk

 g: greyshade land fill 0-1.0 [0.85]

 H: uhdr: User header

 I: Plot interpolated track (default: no interpolation)

 L: ltyp [1]: 1= Solid 2= Dashed 3= Dotted 4= Dashed-dotted

 lthk [1]: 1= standard thickness

 n: fontsize [0.011] - label with track number

 fontcol [15] - label colour

 Note: Set fontsize < 0 to label at opposite end of track

 p: Indicate track points with dots

 This is a special version of -s

 i.e. -p == -s "1,1,1,1,1,1,5,5,5,1,1,1"

 s: Indicate track points with symbols

 sym_params:

"sym_first,sym_last,sym_other,col_first,col_last,col_other,

 siz_first,siz_last,siz_other,sol_first,sol_last,sol_other"

 i.e. 3 symbols, colours, sizes, solid indicators

 sym: 1-5 : 1 (circle) 2 (diamond) 3 (triangle) 4 (square) 5

(star)

 col: 1-67

 siz: >= 1

 sol: 0 (solid) 1 (hollow)

 Y: hdry: Vertical location of header 0-1.0 [0.986]

Examples:
 kmapline -N j.map

 kmapline -a -A 32 -C 55 -c 2,5 j.map < imap

 kmapline -a -C 55 -c 2,5 j.map < imap

 kmapline -a -g 0.95 -C 55 -c 2,5 -Y 0.75 -p j.map < imap

 kmapline -a -g 0.95 -C 1 -L 1,0 -c 2,5 -Y 0.75

 -s "1,1,4,10,60,30,8,8,5,0,0,0" j.map < imap

 Here we have turned off the track lines (-L)
 kmapline -a -g 0.95 -C 1 -L 1,0 -c 2,5 -Y 0.75

 -s "1,1,4,10,60,30,8,0,0,0,0,0" -H "Test of genesis"

 -n 0.007,1 j.map < imap

 Here we are plotting the first points only (cyclogenesis)

 Available projections are:

 MO Mollweide type

 ST Stereographic

 OR Orthographic

 LC Lambert conformal

 LE Lambert equal area

 GN Gnomonic

 AE Azimuthal equidistant

 SV Satellite view

 CE Cylindrical equidistant

 ME Mercator

If you type: kmapline mplfile e.g. kmapline test_ncep.1.mpl

you will be prompted for the response to a set of (hopefully) intuitive questions.

 33

In this example the contents of a MPL file are plotted over the southern

hemisphere (see Figure 4).

kmapline -n 0.010,60 -s "1,1,1, 15,60,3, 5,5,1, 0,0,0" -S test_ncep.1.mpl

 Figure 4: kmapline example – south polar projection (-S).

In this example the contents of a MPL file are plotted over the region south of

Australia. The start points are in red and the end points in blue; trajectory numbers

are in red. The region is defined in the file imap.reg1 along with the responses to

some (keyboard) questions.

File: imap.reg1

CE ← Cylindrical equidistant

 34

0,180

n

-80,80 ← Box 80 – 30 S, 80 – 130 E

-30,180

-80,80 ← Repeat box for CE
-30,180

n

y

c

y

10 ← Grid spacing 10 degree
y

To create the plot (see Figure 5):

kmapline -n 0.010,60 -s "1,1,1, 15,60,3, 5,5,1, 0,0,0" test_ncep.1.mpl <

imap.reg1

Figure 5: kmapline example – CE projection.

6.6 Xconv

 35

If you have GRIB data you may be able to use the freely available utility Xconv

to convert your GRIB file to a NetCDF file. Then you can convert this NetCDF

file to CMP format with read_nc2cmp. The software may be used through a GUI

(xconv) or via a shell version (convsh) which is useful in scripts or on the

command-line. Binary versions of xconv/convsh for many platforms are available

for download from:

http://badc.nerc.ac.uk/help/software/xconv/

For Xconv documentation see:

http://www.met.rdg.ac.uk/~jeff/xconv/

In particular, the following script (saved as grb2nc) will allow command-line

conversion of GRIB to NetCDF

e.g. grb2bc –i test.grb –o test.nc

#!/home/kevin/bin/pc/convsh

Convsh script conv2nc.tcl

Convert input files into single Netcdf file.

All input files must contain the same fields and have

identical dimensions except for the time dimension.

For example to convert UM output files into a Netcdf file

use the following command:

conv2nc.tcl -i xaavaa.pc* -o xaava.nc

Write out Netcdf file

set outformat netcdf

Automatically work out input file type

set filetype 0

Convert all fields in input files to Netcdf

set fieldlist -1

Get command line arguments:

-i input files (can be more than one file)

-o output file (single file only)

set i false

set o false

foreach arg $argv {

 switch -glob -- $arg {

 -i {set i true ; set o false}

 -o {set i false ; set o true}

 -* {puts "unknown option $arg" ; set i false; set o

false}

 default {

 if {$i} {

 set infile [lappend infile $arg]

 } elseif {$o} {

 set outfile [lappend outfile $arg]

 } else {

 puts "unknown option $arg"

 }

 }

 }

}

if {! [info exists infile]} {

 puts "input file name must be given"

 36

 exit

}

if {[info exists outfile]} {

 if {[llength $outfile] > 1} {

 set outfile [lindex $outfile 0]

 puts "Only one output file can be specified, using $outfile"

 }

} else {

 puts "output file name must be given"

 exit

}

6.7 NCAR Graphics/NCL

The optional graphics functionality requires NCAR Graphics which is now part of

the NCAR Control Language (NCL). See:

http://www.ncarg.ucar.edu/download.html

or for NCL directly:

http://www.ncl.ucar.edu/Download/

You will need to request a free ESG account if you don’t have one.

Download and install the appropriate binaries e.g. Red Hat Linux, and follow

the instructions. You can use NCL directly to plot your trajectories or use

kmapline which uses the NCAR Graphics included in NCL. You will need the to

set the environment variable NCARG_ROOT as well as placing th location of the

NCL binaries in your PATH (usually this set up goes in C-shell initialisation file

~/.cshrc):

e.g.
NCAR Graphics and NCL

 setenv NCARG_ROOT /work/user/ncl/linux

 setenv PATH $NCARG_ROOT/bin:$PATH

Alternatively you may download a cut-down binary version of NCAR Graphics for

Linux from:

http://www.earthsci.unimelb.edu.au/~kevin/cyc_L1.1/zncarg_linux_4.3.1_kk.zip

This is based on NCAR Graphics 4.3.1. This is provided for convenience only.

Then download the binary for kmapline included in:

http://www.earthsci.unimelb.edu.au/~kevin/cyc_L1.1/zutils_ncarg.linux.zip

In this case you will need to set the environment variable NCARG_ROOT to the

location of the ncarg folder:

e.g.
setenv NCARG_ROOT /work/user/ncarg/

The directories ncarg/bin and ncarg/ubin need to be added to your PATH:

 37

setenv PATH $NCARG_ROOT/bin:$NCARG_ROOT/ubin/:$PATH

This is mentioned in the NCAR Graphics installation notes.

7. Acknowledgements

• traj3d: Based on lagadtr 2.0 written by David Noone

(http://atoc.colorado.edu/~dcn/index.php) during his PhD at the University of

Melbourne. Some CMP functionality was introduced by Vaughan Barras

(http://www.bom.gov.au/bmrc/mdev/staf/vjb/) during his PhD at the

University of Melbourne. This is turn was derived from a 2D trajectory

program (trajectory) written by Rachel Law during her PhD at the

University of Melbourne.

• tnc2mpl: Based on tnc2mpl written by David Noone.

• read_nc2cmp: Written by Kevin Keay

(http://www.earthsci.unimelb.edu.au/~kevin). The program is based on an

example NOAA program:

 http://www.cdc.noaa.gov/PublicData/readgeneral.f

 plus some suggested guidance from:

 ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/gennet.f

 by Barry Schwartz.

• kmapline: Based on mapline3610 by David Noone and mapline by Rachel

Law.

• NCL: See: http://www.ncl.ucar.edu/

• Xconv: Written by Jeff Cole (http://ncas-

cms.nerc.ac.uk/people/people_research.php?user_ID=33).

8. References

Barras, V., and I. Simmonds, 2009: Observation and modeling of stable water isotopes

as diagnostics of rainfall dynamics over southeastern Australia Journal of Geophysical

Research, 114, D23308, doi:10.1029/2009JD012132, 2009.

Fuelburg, H.E., R.O. Loring Jr., M.V. Watson, M.C. Sinha, K.E. Pickering, A.M.

Thomson, G.W. Sachse, D.R. Blade and M.R. Schoeberl, 1996: TRACE: A trajectory

intercomparison 2. Isentropic and kinematic methods. Journal of Geophysical

Research, 101, 23927-23939.

Noone, D., and I. Simmonds, 1999: A three-dimensional spherical trajectory

algorithm. Research Activities in Atmospheric and Oceanic Modelling, Report No. 28,

WMO/TD-No. 942. H. Ritchie, Ed., World Meteorological Organization, 3.26-3.27.

 38

Law, R.M., 1993: Modelling the global transport of atmospheric constituents. PhD

thesis, School of Earth Sciences, The University of Melbourne.

Perrin, G. and I. Simmonds, 1995: The origins and characteristics of cold air outbreaks

over Melbourne. Australian Meteorological Magazine, 44, 41-59.

